Experimental and numerical investigation of deposition in sewer detention tanks

Matthieu Dufresne
matthieu.dufresne@engees.unistra.fr

Urban hydraulics,
Fluid and solid mechanics institute of Strasbourg (IMFS),
National school for water and environmental engineering of Strasbourg (ENGEES),
France
Summary

1. Presentation of ‘Urban hydraulics’
2. Introduction of this study
3. Experimentation
4. Numerical modelling
5. Conclusion and outlook
Urban hydraulics

- Pluviometry
- Catchment area
- Receiving watercourse
- Grates
- Venturi flume
- Wastewater treatment plant
- Sewer system
Urban hydraulics

Hydraulic works:
Grates, pipes, CSO chambers, detention tanks, Venturi flumes...

Numerical modelling

Experimentation

Hydraulics

Sediment transport

Design

Diagnosis

Instrumentation

Research

Engineering
Summary

1. Presentation of ‘Urban hydraulics’
2. Introduction of this study
3. Physical modelling
4. Numerical modelling
5. Conclusion and outlook
Introduction

- Objective of the whole study: operational tool for the design and the rehabilitation of sewer detention tanks
 - numerical model
 - technical guidelines

- Need for experimental data about trap efficiency and spatial distribution of deposits
Introduction

Rectangular tanks

Physical models:
- Stovin (1997) - Univ. Sheffield
- Dufresne (2008) - INSA Strasbourg
- Kantoush (2008) - EPFL
- Dufresne, Dewals et al. (2009) - ULg
- Camnasio (2010) - Milano, EPFL

Circular tanks

Physical model:
- In project (2011)

Complex geometries

Real-life applications
Introduction

Rectangular tanks

Complex geometries

Circular tanks

Physical models:
- Stovin (1997) - Univ. Sheffield
- Dufresne (2008) - INSA Strasbourg
- Kantoush (2008) - EPFL
- Dufresne (2009) - ULg
- Camnasio (2010) - Milano, EPFL

Physical model:

Data for developing and/or optimizing numerical models

Real-life applications

Data for testing numerical models
Summary

1. Presentation of ‘Urban hydraulics’
2. Introduction of this study
3. **Experimentation**
4. Numerical modelling
5. Conclusion and outlook
Spatial distribution of deposits

- 2.4 mm
- 1,020 kg/m³
- 25 mm/s

Fr = 0.2
h/ΔB = 0.6
Trap efficiency
Summary

1. Presentation of ‘Urban hydraulics’
2. Introduction of this study
3. Experimentation
4. Numerical modelling
5. Conclusion and outlook
Numerical modelling

• **Software:** Ansys Fluent (3D)

• **Flow models:**
 – Isotropic turbulence model: k-ε
 – Wall treatment: standard wall functions
 – Free surface: symmetry plane

• **Particle transport:**
 – Lagrangian particle tracking
 – Specific treatment for deposition on the bed: bed shear stress, bed turbulent kinetic energy
Lagrangian particle tracking

If value < threshold
Then deposition

Bed of the tank

Trajectory of the particle

If value > threshold
Then resuspension
Numerical modelling

<table>
<thead>
<tr>
<th>EXPERIENCES</th>
<th>SIMULATIONS</th>
<th>BSS\textsubscript{critique} = 0.03 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) 2.0 L/s</td>
<td>CL = 0.15</td>
<td>CL = 0.5</td>
</tr>
<tr>
<td></td>
<td>0.40 m/s</td>
<td>0.40 m/s</td>
</tr>
<tr>
<td></td>
<td>CL = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40 m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.40 m/s</td>
<td></td>
</tr>
</tbody>
</table>
Numerical modelling

<table>
<thead>
<tr>
<th>EXPERIENCES</th>
<th>SIMULATIONS</th>
<th>BSS\textsubscript{critique} = 0.03 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>(49) 1.0 L/s</td>
<td>CL = 0.15</td>
<td>CL = 0.5</td>
</tr>
<tr>
<td></td>
<td>CL = 1</td>
<td>CL = 2</td>
</tr>
</tbody>
</table>

- EXPERIENCES: Image showing an experiment with 1.0 L/s flow rate.
- SIMULATIONS: Graphs showing particle distribution for different CL values:
 - CL = 0.15
 - CL = 0.5
 - CL = 1
 - CL = 2
Numerical modelling

![Graphs showing trap efficiency vs. inflow velocity for Asym. flow and Sym. flow, with different obstacle and column configurations.](image-url)
Summary

1. Presentation of ‘Urban hydraulics’
2. Introduction of this study
3. Experimentation
4. Numerical modelling
5. Conclusion and outlook
Conclusion and outlook

• Conclusion:
 – Experimentation => Large dataset of experimental results
 – Numerical modelling => New bed boundary condition
 – Good reproduction of the spatial distribution of deposits
 – Overestimation of the trap efficiency in most cases

• Outlook:
 – Taking into account the anisotropy of turbulence near the bed
 – Threshold values
 – Circular tanks
 – Real-life applications
Experimental and numerical investigation of deposition in sewer detention tanks

Matthieu Dufresne
matthieu.dufresne@engees.unistra.fr

Urban hydraulics,
Fluid and solid mechanics institute of Strasbourg (IMFS),
National school for water and environmental engineering of Strasbourg (ENGEES),
France